Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
1.
J Hazard Mater ; 470: 134123, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554508

RESUMO

Tetracycline (TC), widely found in various environments, poses significant risks to ecosystems and human health. While efficient biodegradation removes TC, the mechanisms underlying this process have not been elucidated. This study investigated the molecular mechanisms underlying TC biosorption and transfer within the extracellular polymeric substances (EPS) of strain DX-21 and its biodegradation process using fourier transform infrared spectroscopy, molecular docking, and multiomics. Under TC stress, DX-21 increased TC biosorption by secreting more extracellular polysaccharides and proteins, particularly the latter, mitigating toxicity. Moreover, specialized transporter proteins with increased binding capacity facilitated TC movement from the EPS to the cell membrane and within the cell. Transcriptomic and untargeted metabolomic analyses revealed that the presence of TC led to the differential expression of 306 genes and significant alterations in 37 metabolites. Notably, genes related to key enzymes, such as electron transport, peroxidase, and oxidoreductase, exhibited significant differential expression. DX-21 combated and degraded TC by regulating metabolism, altering cell membrane permeability, enhancing oxidative defense, and enhancing energy availability. Furthermore, integrative omics analyses indicated that DX-21 degrades TC via various enzymes, reallocating resources from other biosynthetic pathways. These results advance the understanding of the metabolic responses and regulatory mechanisms of DX-21 in response to TC.


Assuntos
Antibacterianos , Biodegradação Ambiental , Pseudomonas , Tetraciclina , Tetraciclina/toxicidade , Tetraciclina/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Pseudomonas/efeitos dos fármacos , Antibacterianos/toxicidade , Simulação de Acoplamento Molecular , Metabolômica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcriptoma/efeitos dos fármacos , Multiômica
2.
Microb Biotechnol ; 17(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085112

RESUMO

Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-RTET ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-RTET were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-RTET and provides an effective approach to combat resistant bacteria.


Assuntos
Edwardsiella tarda , Resistência a Tetraciclina , Humanos , Edwardsiella tarda/metabolismo , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Força Próton-Motriz , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Bactérias/metabolismo
3.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 7): 180-192, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405486

RESUMO

The resistance of the emerging human pathogen Stenotrophomonas maltophilia to tetracycline antibiotics mainly depends on multidrug efflux pumps and ribosomal protection enzymes. However, the genomes of several strains of this Gram-negative bacterium code for a FAD-dependent monooxygenase (SmTetX) homologous to tetracycline destructases. This protein was recombinantly produced and its structure and function were investigated. Activity assays using SmTetX showed its ability to modify oxytetracycline with a catalytic rate comparable to those of other destructases. SmTetX shares its fold with the tetracycline destructase TetX from Bacteroides thetaiotaomicron; however, its active site possesses an aromatic region that is unique in this enzyme family. A docking study confirmed tetracycline and its analogues to be the preferred binders amongst various classes of antibiotics.


Assuntos
Oxitetraciclina , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Cristalografia por Raios X , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Oxitetraciclina/metabolismo , Testes de Sensibilidade Microbiana
4.
Water Res ; 243: 120397, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499542

RESUMO

As an emerging pollutant, the antibiotic tetracycline (TC) has been consistently detected in wastewater and activated sludge. Biodegradation represents a potentially crucial pathway to dissipate TC contamination. However, few efficient TC-degrading bacteria have been isolated and a comprehensive understanding of the molecular mechanisms underlying TC degradation is still lacking. In this study, a novel TC-degrading bacterium, designated as Sphingobacterium sp. WM1, was successfully isolated from activated sludge. Strain WM1 exhibited a remarkable performance in degrading 50 mg/L TC within 1 day under co-metabolic conditions. Genomic analysis of the strain WM1 unveiled the presence of three functional tetX genes. Unraveling the complex molecular mechanisms, transcriptome analysis highlighted the role of upregulated transmembrane transport and accelerated electron transport in facilitating TC degradation. Proteomics confirmed the up-regulation of proteins involved in cellular biosynthesis/metabolism and ribosomal processes. Crucially, the tetX gene-encoding protein showed a significant upregulation, indicating its role in TC degradation. Heterologous expression of the tetX gene resulted in TC dissipation from an initial 51.9 mg/L to 4.2 mg/L within 24 h. The degradation pathway encompassed TC hydroxylation, transforming into TP461 and subsequent metabolites, which effectively depleted TC's inhibitory activity. Notably, the tetX genes in strain WM1 showed limited potential for horizontal gene transfer. Collectively, strain WM1's potent TC degradation capacity signals a promise for enhancing TC clean-up strategies.


Assuntos
Esgotos , Sphingobacterium , Esgotos/microbiologia , Sphingobacterium/metabolismo , Multiômica , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
5.
Stem Cell Res ; 71: 103163, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37433260

RESUMO

Towards increasing the possibility for temporal control of gene expression using CRISPR activation (a) systems, we generated homozygous human induced pluripotent stem cell (hiPSC) lines carrying a doxycycline (dox)-inducible guide(g)-RNA construct targeting the SHISA3 transciptional start site, as proof-of-principle, or a non targeting gRNA as a control. The dox-inducible gRNA cassette was inserted into the human ROSA26 locus in a line with dCas9VPR integrated at the AAVS1 locus (CRISPRa/Tet-iSHISA3). Pluripotency, genomic integrity and differentiation potential into all three germ layers were maintained. Dox-dependent gene induction was validated in hiPSCs as well as derived fibroblasts. These lines provide an attractive tool for cellular reprogramming in hiPSC-derived cells in a timely controlled manner.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Reprogramação Celular , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Diferenciação Celular/genética , Antibacterianos , Doxiciclina/farmacologia
6.
Sensors (Basel) ; 23(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514920

RESUMO

Deposition of calcium-containing minerals such as hydroxyapatite and whitlockite in the subretinal pigment epithelial (sub-RPE) space of the retina is linked to the development of and progression to the end-stage of age-related macular degeneration (AMD). AMD is the most common eye disease causing blindness amongst the elderly in developed countries; early diagnosis is desirable, particularly to begin treatment where available. Calcification in the sub-RPE space is also directly linked to other diseases such as Pseudoxanthoma elasticum (PXE). We found that these mineral deposits could be imaged by fluorescence using tetracycline antibiotics as specific stains. Binding of tetracyclines to the minerals was accompanied by increases in fluorescence intensity and fluorescence lifetime. The lifetimes for tetracyclines differed substantially from the known background lifetime of the existing natural retinal fluorophores, suggesting that calcification could be visualized by lifetime imaging. However, the excitation wavelengths used to excite these lifetime changes were generally shorter than those approved for retinal imaging. Here, we show that tetracycline-stained drusen in post mortem human retinas may be imaged by fluorescence lifetime contrast using multiphoton (infrared) excitation. For this pilot study, ten eyes from six anonymous deceased donors (3 female, 3 male, mean age 83.7 years, range 79-97 years) were obtained with informed consent from the Maryland State Anatomy Board with ethical oversight and approval by the Institutional Review Board.


Assuntos
Degeneração Macular , Tetraciclina , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Tetraciclina/metabolismo , Projetos Piloto , Retina , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/metabolismo , Antibacterianos/metabolismo
7.
Rev Argent Microbiol ; 55(4): 317-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400312

RESUMO

Bacillus thuringiensis is an entomopathogen belonging to the Bacillus cereus clade. We isolated a tetracycline-resistant strain called m401, recovered it from honey, and identified it as Bacillus thuringiensis sv. kumamotoensis based on the average nucleotide identity calculations (ANIb) comparison and the analysis of the gyrB gene sequences of different B. thuringiensis serovars. Sequences with homology to virulence factors [cytK, nheA, nheB, nheC, hblA, hblB, hblC, hblD, entFM, and inhA] and tetracycline resistance genes [tet(45), tet(V), and tet(M)/tet(W)/tet(O)/tet(S) family] were identified in the bacterial chromosome. The prediction of plasmid-coding regions revealed homolog sequences to the MarR and TetR/AcrR family of transcriptional regulators, toxins, and lantipeptides. The genome mining analysis revealed 12 regions of biosynthetic gene clusters responsible for synthesizing secondary metabolites. We identified biosynthetic gene clusters coding for bacteriocins, siderophores, ribosomally synthesized post-translationally modified peptide products, and non-ribosomal peptide synthetase clusters that provide evidence for the possible use of Bt m401 as a biocontrol agent. Furthermore, Bt m401 showed high inhibition against all Paenibacillus larvae genotypes tested in vitro. In conclusion, Bt m401 owns various genes involved in different biological processes, such as transductional regulators associated with antibiotic resistance, toxins, and antimicrobial peptides with potential biotechnological and biocontrol applications.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/genética , Microbiologia de Alimentos , Filogenia , Bacillus cereus , Antibacterianos/farmacologia , Tetraciclina/metabolismo
8.
Sci Total Environ ; 899: 165695, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487904

RESUMO

Exposure to sub-inhibitory concentrations (sub-MICs) of antibiotics could induce the biofilm formation of microorganisms, but its underlying mechanisms still remain elusive. In the present work, biofilm formation by Salmonella Typhimurium M3 was increased when in the presence of tetracycline at sub-MIC, and the highest induction was observed with tetracycline at 1/8 MIC. The integration of RNA-sequencing and untargeted metabolomics was applied in order to further decipher the potential mechanisms for this observation. In total, 439 genes and 144 metabolites of S. Typhimurium M3 were significantly expressed after its exposure to 1/8 MIC of tetracycline. In addition, the co-expression analysis revealed that 6 genes and 8 metabolites play a key role in response to 1/8 MIC of tetracycline. The differential genes and metabolites were represented in 12 KEGG pathways, including five pathways of amino acid metabolism (beta-alanine metabolism, tryptophan metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glutathione metabolism), three lipid metabolism pathways (biosynthesis of unsaturated fatty acids, fatty acid degradation, and fatty acid biosynthesis), two nucleotide metabolism pathways (purine metabolism, and pyrimidine metabolism), pantothenate and CoA biosynthesis, and ABC transporters. Metabolites (anthranilate, indole, and putrescine) from amino acid metabolism may act as signaling molecules to promote the biofilm formation of S. Typhimurium M3. The results of this work highlight the importance of low antimicrobial concentrations on foodborne pathogens of environmental origin.


Assuntos
Multiômica , Salmonella typhimurium , Triptofano , Biofilmes , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Ácidos Graxos/metabolismo
9.
Curr Protoc ; 3(6): e792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283517

RESUMO

Our group has developed several approaches for stable, non-viral integration of inducible transgenic elements into the genome of mammalian cells. Specifically, a piggyBac tetracycline-inducible genetic element of interest (pB-tet-GOI) plasmid system allows for stable piggyBac transposition-mediated integration into cells, identification of cells that have been transfected using a fluorescent nuclear reporter, and robust transgene activation or suppression upon the addition of doxycycline (dox) to the cell culture or the diet of the animal. Furthermore, the addition of luciferase downstream of the target gene allows for quantitative assessment of gene activity in a non-invasive manner. More recently, we have developed a transgenic system as an alternative to piggyBac called mosaic analysis by dual recombinase-mediated cassette exchange (MADR), as well as additional in vitro transfection techniques and in vivo dox chow applications. The protocols herein provide instructions for the use of this system in cell lines and in the neonatal mouse brain. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning of respective genetic element of interest (GOI) into response plasmid Basic Protocol 2: In vitro nucleofection of iPSC-derived human/mouse neural progenitor cells and subsequent derivation of stable inducible cell lines Alternate Protocol: In vitro electroporation of iPSC-derived human/mouse neural progenitor cells Support Protocol: Recovery stage after in vitro transfection Basic Protocol 3: Adding doxycycline to cells to induce/reverse GOI Basic Protocol 4: Assessing gene expression in vitro by non-invasive bioluminescence imaging of luciferase activity.


Assuntos
Doxiciclina , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Doxiciclina/farmacologia , Doxiciclina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Genes Reporter , Vetores Genéticos , Elementos de DNA Transponíveis , Antibacterianos/metabolismo , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Luciferases/genética , Luciferases/metabolismo , Expressão Gênica , Encéfalo , Mamíferos/genética , Mamíferos/metabolismo
10.
Biol Open ; 12(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37284818

RESUMO

We report data consistent with tetracycline-mediated fluorescence having the potential to be an effective marker of senescence in immortalised cells. HeLa cells that had previously undergone more than 20 passages were transiently transfected with a plasmid encoding a novel tetracycline-inducible transgene featuring an open reading frame for green fluorescent protein. While characterising the performance of this plasmid and transfection procedure, HeLa cell fluorescence was observed to result from incubating cells with media containing 2 µg/ml tetracycline alone, without plasmid or transfection reagent. To investigate this phenomenon further, HeLa and HEK293T cells were purchased from a tissue culture collection and after cultivation over 4-23 passages, incubated with media containing 2 µg/ml tetracycline. For both cell lines, tetracycline-mediated fluorescence increase correlated with passage number increase. This effect in HeLa and HEK293T cells was also borne out by expression of ß-galactosidase activity, an imperfect but widely used marker of cellular senescence. These data suggest tetracycline may have utility as a marker of cellular senescence in immortal cells and can inform future investigation and validation of this previously unreported application for this reagent.


Assuntos
Antibacterianos , Tetraciclina , Humanos , Células HeLa , Células HEK293 , Tetraciclina/farmacologia , Tetraciclina/metabolismo , beta-Galactosidase/metabolismo
11.
J Hazard Mater ; 458: 131889, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348375

RESUMO

Livestock-derived tetX-positive Escherichia coli with tigecycline resistance poses a serious risk to public health. Fitness costs, antibiotic residues, and other tetracycline resistance genes (TRGs) are fundamental in determining the spread of tetX in the environment, but there is a lack of relevant studies. The results of this study showed that both tetO and tetX resulted in reduction in growth and an increased in the metabolic burden of E. coli, but the presence of doxycycline reversed this phenomenon. Moreover, the protection of E. coli growth and metabolism by tetO was superior to that of tetX in the presence of doxycycline, resulting in a much lower competitiveness of tetX-carrying E. coli than tetO-carrying E. coli. The results of RNA-seq showed that the increase in outer membrane proteins (ompC, ompF and ompT) of tetX-carrying E. coli resulted in increased membrane permeability and biofilm formation, which is an important reason for fitness costs. Overall, the increased membrane permeability and metabolic burden of E. coli is the mechanistic basis for the high fitness cost of tetX, and the spread of tetO may limit the spread of tetX. This study provides new insights into the rational use of tetracycline antibiotics to control the spread of tetX.


Assuntos
Doxiciclina , Escherichia coli , Tigeciclina/metabolismo , Escherichia coli/genética , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Testes de Sensibilidade Microbiana
12.
Environ Pollut ; 333: 121983, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301459

RESUMO

The removal efficiency of antibiotics decreases at low temperature, which is an urgent problem to be solved in cold regions. This study prepared a low-cost single atom catalyst (SAC) from straw biochar, which can rapidly degrade antibiotics at different temperatures by activating peroxydisulfate (PDS). Co SA/CN-900 + PDS system can degrade 100% of tetracycline hydrochloride (TCH, 10 mg/L) in 6 min. The high concentration of TCH (25 mg/L) was degraded by 96.3% in 10 min at 4 °C. The system was also tested in simulated wastewater and showed a good removal efficiency. TCH was primarily degraded by 1O2 and direct electron transfer pathway. Electrochemical experiments and density functional theory (DFT) calculations showed that CoN4 improved the electron transfer capacity of biochar and thus enhanced the oxidation capacity of Co SA/CN-900 + PDS complex. This work optimizes the application of agricultural waste biochar and provides a design strategy of efficient heterogenous Co SACs to degrade antibiotics in cold regions.


Assuntos
Antibacterianos , Carvão Vegetal , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Águas Residuárias
13.
Chemosphere ; 333: 138987, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209845

RESUMO

The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.


Assuntos
Ferro , Esgotos , Ferro/farmacologia , Ferro/metabolismo , Oxidação Anaeróbia da Amônia , Anaerobiose , Oxirredução , Bactérias/metabolismo , Tetraciclina/toxicidade , Tetraciclina/metabolismo , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Reatores Biológicos , Nitrogênio/metabolismo , Desnitrificação
14.
Sci Total Environ ; 881: 163410, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059136

RESUMO

Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Solo/química , Microbiologia do Solo , Tetraciclina/metabolismo , Antibacterianos/metabolismo , Poluentes do Solo/análise
15.
J Hazard Mater ; 452: 131035, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958165

RESUMO

In this study, activated carbon-loaded nano-zero-valent iron (nZVI-C) composites were added to anaerobic ammonium oxidation bacteria (AnAOB) to overcome the inhibition of tetracycline hydrochloride (TCH). Results showed that 500 mg L-1 nZVI-C effectively mitigated the long-term inhibition of 1.5 mg L-1 TCH on AnAOB and significantly improved the total nitrogen removal efficiency (TNRE) (from 65.27% to 86.99%). Spectroscopic analysis revealed that nZVI-C increased the content of N-H and CO groups in EPS, which contributed to the adsorption of TCH. The accumulation of humic acid-like substances in EPS was also conducive to strengthening the extracellular defense level. In addition, TCH-degrading bacteria (Clostridium and Mycobacterium) were enriched in situ, and the abundance of Ca. Brocadia was significantly increased (from 10.69% to 18.59%). Furthermore, nZVI-C increased the abundance of genes encoding tetracycline inactivation (tetX), promoted mineralization of TCH by 90%, weakening the inhibition of TCH on microbial nitrogen metabolism. nZVI-C accelerated the electron consumption of anammox bacteria by upregulating the abundance of electron generation genes (nxrA, hdh) and providing electrons directly.


Assuntos
Microbiota , Tetraciclina , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Ferro/química , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Esgotos/química , Nitrogênio/metabolismo , Reatores Biológicos , Oxirredução
16.
J Med Chem ; 66(6): 3917-3933, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36877173

RESUMO

Tetracyclines (TCs) are an important class of antibiotics threatened by an emerging new resistance mechanism─enzymatic inactivation. These TC-inactivating enzymes, also known as tetracycline destructases (TDases), inactivate all known TC antibiotics, including drugs of last resort. Combination therapies consisting of a TDase inhibitor and a TC antibiotic represent an attractive strategy for overcoming this type of antibiotic resistance. Here, we report the structure-based design, synthesis, and evaluation of bifunctional TDase inhibitors derived from anhydrotetracycline (aTC). By appending a nicotinamide isostere to the C9 position of the aTC D-ring, we generated bisubstrate TDase inhibitors. The bisubstrate inhibitors have extended interactions with TDases by spanning both the TC and presumed NADPH binding pockets. This simultaneously blocks TC binding and the reduction of FAD by NADPH while "locking" TDases in an unproductive FAD "out" conformation.


Assuntos
Compostos Heterocíclicos , Tetraciclina , Tetraciclina/farmacologia , Tetraciclina/metabolismo , NADP/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclinas/farmacologia , Inibidores da Síntese de Proteínas , Oxirredução
17.
Biodegradation ; 34(4): 325-340, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840888

RESUMO

Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m3 d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC-MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, Pseudomonas sp., Kocuria Polaris, and Staphylococcus sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.


Assuntos
Compostos Heterocíclicos , Águas Residuárias , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Compostos Orgânicos , Reatores Biológicos , Eliminação de Resíduos Líquidos , Biodegradação Ambiental
18.
Water Environ Res ; 95(3): e10846, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36789451

RESUMO

Due to the increasing use of antibiotics, tetracycline was frequently detected in wastewater. As a novel technology, algal-bacterial granular sludge process is expected to be widely used in wastewater treatment. However, the degradation effect of tetracycline by algal-bacterial granular sludge process and its degradation path is still unknown. In this study, mature and stable algal-bacterial granular sludge was cultured and the degradation of tetracycline by it was investigated. The results showed that the removal amount of 1-25 mg/L tetracycline by algal-bacterial granular sludge was 0.09-1.45 mg/g volatile suspended solids (VSS), in which the adsorption amount was 0.06-0.17 mg/g VSS and the degradation amount was 0.03-1.27 mg/g VSS. Tetracycline biosorption was dominant at its concentration of 1-3 mg/L, while biodegradation was predominant at 5-25 mg/L of tetracycline. At tetracycline concentration of 3-5 mg/L, the contribution of biosorption and biodegradation to tetracycline removal by algal-bacterial granular sludge process was almost equal. Algal-bacterial granular sludge could effectively degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. In addition, the degradation products were nontoxic and hardly pose a threat to environmental health. The research results of this paper provide a solid theoretical basis for tetracycline removal by algal-bacterial granular sludge and a reference for the development of algal-bacterial granular sludge process for wastewater treatment in the presence of tetracycline. PRACTITIONER POINTS: Mature and stable algal-bacterial granular sludge was cultured. Tetracycline was removed by algal-bacterial granular sludge through biosorption and biodegradation. Algal-bacterial granular sludge could degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. The degradation products were nontoxic.


Assuntos
Esgotos , Tetraciclina , Esgotos/microbiologia , Tetraciclina/metabolismo , Antibacterianos , Águas Residuárias , Bactérias/metabolismo , Reatores Biológicos/microbiologia
19.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768998

RESUMO

Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum. This feature may help effectively cleanse the hair follicles in the accumulated sebum layer. A series of formulations with varying proportions of anionic polymer and alcoholamine and containing different polymers have been developed. The stability of tetracycline hydrochloride contained in the hydrogels was evaluated for 28 days by HPLC analysis. Formulations containing a large excess of TRIS alcoholamine led to the rapid degradation of TC from an initial concentration of about 10 µg/mL to about 1 µg/mL after 28 days. At the same time, these formulations showed the highest activity against artificial sebum components. Thanks to appropriately selected proportions of the components, it was possible to develop a formulation that assured the stability of tetracycline for ca. one month, while maintaining formulation activity against the components of model sebum.


Assuntos
Sebo , Tetraciclina , Tetraciclina/farmacologia , Tetraciclina/metabolismo , Sebo/química , Sebo/metabolismo , Hidrogéis/metabolismo , Antibacterianos/metabolismo , Pele , Polímeros/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36764589

RESUMO

In aquatic environment, engineered materials may inevitably interact with the coexisted organic pollutants, which affect their bioavailability and toxicity. In this contribution, the combined impacts of tetracycline (TC) and titanium dioxide nanoparticles (TiO2 NPs) on the neurodevelopment of zebrafish larvae were investigated, and the underlying mechanisms were further elucidated. Firstly, it was confirmed that the co-existence of TC would increase the size and decrease the zeta potential of TiO2 NPs. Following, developmental indicators and motor behaviors were investigated. Our results indicated that co-exposure to TC and TiO2 NPs exhibited enhanced embryonic malformation rates and abnormal nervous system development in zebrafish embryos. Meanwhile, the locomotor behavior was increased upon treatment of TC and TiO2 NP. Further, pathway enrichment analyses of transcriptomic sequencing provided detailed information that either lipid metabolism or PPAR signaling pathway were significantly affected in the co-exposure group. Also, TC + TiO2 NP exposure significantly changed the mRNA expression of neural development-related genes and up-regulated the expression levels of neurotransmitters like 5-hydroxytryptamine, dopamine, acetylcholinesterase, and γ-aminobutyric acid. Taken together, our results demonstrated that the co-exposure of TC and TiO2 NPs had the potential to cause neurotoxicity in zebrafish embryos.


Assuntos
Nanopartículas , Síndromes Neurotóxicas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Acetilcolinesterase/metabolismo , Tetraciclina/metabolismo , Antibacterianos/metabolismo , Titânio/toxicidade , Nanopartículas/toxicidade , Síndromes Neurotóxicas/etiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...